2018-02-27考试

今天的题目终于正常了(吗?)
T3我的解法原来是骗分

题目

T1:矩阵(matrix)
T2:洗头(head)
T3:铁路(railway)

结果

题解

T1

悬线法什么鬼
很好懂的。

Ti1
Ti2
Ti3

T2

最小生成树计数
本质是搜索

T3

(不会)不可做

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
#include<bits/stdc++.h>
#define RG register
#define file(x) freopen(#x".in", "r", stdin);freopen(#x".out", "w", stdout);
#define clear(x, y) memset(x, y, sizeof(x));
using namespace std;

inline int read()
{
int data=0, w=1;
char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') w=-1, ch=getchar();
while(ch>='0'&&ch<='9') data=(data<<3)+(data<<1)+(ch^48), ch=getchar();
return data*w;
}

const int maxn(2010);
int g[maxn][maxn], up[maxn][maxn], dn[maxn][maxn], ans, n;

int main()
{
n=read();
for(RG int i=1;i<=n;i++) for(RG int j=1;j<=n;j++) g[i][j]=read(), up[i][j]=g[i][j]?0:up[i-1][j]+1;
for(RG int i=n;i;i--) for(RG int j=1;j<=n;j++) dn[i][j]=g[i][j]?0:dn[i+1][j]+1;
for(RG int i=1;i<=n;i++)
{
int mup=n, mdn=n, l=0;
for(RG int j=1;j<=n;j++)
{
if(g[i][j]) { mup=mdn=n; l=0; continue; }
l++; mup=min(mup, up[i][j]); mdn=min(mdn, dn[i][j]);
ans=max(ans, l*(mup+mdn-1));
}
}
return printf("%d\n", ans)&0;
}

T2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#include<bits/stdc++.h>
#define RG register
#define file(x) freopen(#x".in", "r", stdin);freopen(#x".out", "w", stdout);
#define clear(x, y) memset(x, y, sizeof(x));
using namespace std;

inline int read()
{
int data=0, w=1;
char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') w=-1, ch=getchar();
while(ch>='0'&&ch<='9') data=(data<<3)+(data<<1)+(ch^48), ch=getchar();
return data*w;
}

const int maxn(1e5+10), mod(31011);
struct edge { int u, v, w; } e[maxn];
inline bool cmp(const edge &a, const edge &b) { return a.w<b.w; }

int n, m, dis[maxn], len, L[maxn], R[maxn], fa[maxn], pre[maxn], mst, ans=1;
inline int find(int x) { return fa[x]==x?x:fa[x]=find(fa[x]); }

int main()
{
n=read(); m=read();
for(RG int i=1;i<=m;i++) e[i]=(edge){read(), read(), read()}, dis[i]=e[i].w;
clear(L, 127);
sort(e+1, e+m+1, cmp); sort(dis+1, dis+m+1);
len=unique(dis+1, dis+m+1)-dis-1;
for(RG int i=1;i<=m;i++)
{
e[i].w=lower_bound(dis+1, dis+len+1, e[i].w)-dis;
L[e[i].w] = min(L[e[i].w], i);
R[e[i].w] = max(R[e[i].w], i);
}
for(RG int i=1;i<=n;i++) fa[i]=i;
for(RG int t=1;t<=len;t++)
{
for(RG int i=1;i<=n;i++) pre[i]=fa[i];
int sum=0, tot=0;
for(RG int i=L[t];i<=R[t];i++)
if(find(e[i].u)^find(e[i].v))
{
sum++; (mst+=dis[t])%=mod;
fa[find(e[i].u)]=find(e[i].v);
}
if(!sum) continue;
for(RG int i=1, SET=(1<<(R[t]-L[t]+1))-1;i<=SET;i++)
{
for(RG int j=1;j<=n;j++) fa[j]=pre[j];
int now=0; bool bj=true;
for(RG int j=0;j<=R[t]-L[t];j++)
if(i&(1<<j))
{
if(find(e[j+L[t]].u)^find(e[j+L[t]].v)) now++, fa[find(e[j+L[t]].u)]=find(e[j+L[t]].v);
else bj=false;
}
if(now==sum&&bj) tot++;
}
ans=1ll*ans*tot%mod;
for(RG int i=L[t];i<=R[t];i++) fa[find(e[i].u)]=find(e[i].v);
bool bj=true;
for(RG int i=2;i<=n;i++) if(find(i)^find(1)) { bj=false; break; }
if(bj) return printf("%d %d %d\n", n-1, mst, ans*n%mod)&0;
}
return 0;
}
Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×